pub struct Linear<B>where
B: Backend,{ /* private fields */ }Expand description
Implementations§
Source§impl<B> Linear<B>where
B: Backend,
impl<B> Linear<B>where
B: Backend,
Sourcepub fn new(
in_features: usize,
out_features: usize,
use_bias: bool,
dtype: DType,
device: &<B as Backend>::Device,
) -> Result<Linear<B>, Error>
pub fn new( in_features: usize, out_features: usize, use_bias: bool, dtype: DType, device: &<B as Backend>::Device, ) -> Result<Linear<B>, Error>
Create a new Linear layer with Kaiming uniform initialization.
§Arguments
in_features: size of each input sampleout_features: size of each output sampleuse_bias: whether to add a learnable biasdtype: data type for parametersdevice: device to create parameters on
Sourcepub fn from_tensors(
weight: Tensor<B>,
bias: Option<Tensor<B>>,
) -> Result<Linear<B>, Error>
pub fn from_tensors( weight: Tensor<B>, bias: Option<Tensor<B>>, ) -> Result<Linear<B>, Error>
Create a Linear layer from existing weight and bias tensors. Useful for loading pre-trained models.
Sourcepub fn in_features(&self) -> usize
pub fn in_features(&self) -> usize
The input feature dimension.
Sourcepub fn out_features(&self) -> usize
pub fn out_features(&self) -> usize
The output feature dimension.
Trait Implementations§
Source§impl<B> Module<B> for Linear<B>where
B: Backend,
impl<B> Module<B> for Linear<B>where
B: Backend,
Source§fn forward(&self, x: &Tensor<B>) -> Result<Tensor<B>, Error>
fn forward(&self, x: &Tensor<B>) -> Result<Tensor<B>, Error>
Forward pass: y = x @ W^T + b
Input shape: [batch, in_features] Output shape: [batch, out_features]
Source§fn parameters(&self) -> Vec<Tensor<B>>
fn parameters(&self) -> Vec<Tensor<B>>
Return all trainable parameters of this module.
The optimizer uses these to update weights during training.
Source§fn named_parameters(&self) -> Vec<(String, Tensor<B>)>
fn named_parameters(&self) -> Vec<(String, Tensor<B>)>
Return all trainable parameters with human-readable names. Read more
Source§fn set_training(&self, _training: bool)
fn set_training(&self, _training: bool)
Set training or evaluation mode. Read more
Source§fn is_training(&self) -> bool
fn is_training(&self) -> bool
Whether the module is in training mode (default: true).
Source§fn num_parameters(&self) -> usize
fn num_parameters(&self) -> usize
Total number of scalar parameters in this module.
Source§fn trainable_params_count(&self) -> usize
fn trainable_params_count(&self) -> usize
Number of trainable (variable) parameters.
Auto Trait Implementations§
impl<B> Freeze for Linear<B>
impl<B> RefUnwindSafe for Linear<B>
impl<B> Send for Linear<B>
impl<B> Sync for Linear<B>
impl<B> Unpin for Linear<B>
impl<B> UnwindSafe for Linear<B>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more