pub fn smooth_l1_loss<B>(
prediction: &Tensor<B>,
target: &Tensor<B>,
beta: f64,
) -> Result<Tensor<B>, Error>where
B: Backend,Expand description
Smooth L1 Loss (Huber Loss):
⎧ 0.5 * (x)² / beta if |x| < beta
loss(x) = ⎨
⎩ |x| - 0.5 * beta otherwisewhere x = prediction - target.
Transitions smoothly from L2 (near zero) to L1 (far from zero) at beta.
Used in Faster R-CNN and SSD for bounding box regression.
§Arguments
prediction: predicted values (any shape)target: ground truth values (same shape)beta: threshold at which to switch from L2 to L1 (must be > 0)