pub fn bce_with_logits_loss<B>(
logits: &Tensor<B>,
target: &Tensor<B>,
) -> Result<Tensor<B>, Error>where
B: Backend,Expand description
Binary Cross-Entropy with Logits (numerically stable).
Combines sigmoid + BCE in a single formula: loss = mean(max(x, 0) - x*t + log(1 + exp(-|x|)))
This is numerically stable for any logit value.
ยงArguments
logits: raw scores (before sigmoid), any shapetarget: binary targets in {0, 1}, same shape